March 30, 2011
Peranan dan Pengaruh Teknologi Komunikasi Informasi pada gerakan demokratisasi kehidupan bermasyarakat, berbangsa dan bernegara
Adanya kemajuan teknologi informasi dan komnikasi sangat berpengaruh pada kehidupan. Sebagai contoh dengan adanya internet seseorang bisa mengakses berita dari berbagai negara di seluruh dunia. Selain itu dengan adanya jejaring sosial seperti fcebook, twitter dan jejaring sosial yang lain masyarakat bebas menyampaikan informasi kepada semua pihak, bahkan banyak masyarakat yang menggunakan jejaring sosial untuk mengkritik pemerintah. Saat ini seseorang berhak untuk menyampaikan maupun menerima informasi, hal ini telah diatur dalam amandemen UUD 1945 pasal 28F: “Setiap orang berhak untuk berkomunikasi dan memperoleh informasi untuk mengembangkan pribadi dan lingkungan sosialnya, serta berhak untuk mencari, memperoleh, memiliki, mengolah, dan menyampaikan informasi dengan segala jenis saluran yang tersedia”. Dengan adanya undang-undang tersebut berarti masyarakat berhak memperoleh informasi dari pihak manapun termasuk dari pemerintah.
March 25, 2011
AWAS! Hati-Hati Jangan Sampai Anda Tertipu
(818)Plgn Yth, Selamat anda mdptkn hadiah cek Rp 15 jt. Dari Kukubima ENER-G!. U/Info hub kantor PT. SIDOMUNCUL 021-3613 1828
Dalam pesan di atas ada angka 818, angka tersebut digunakan untuk mengecoh pembaca agar seolah- olah pesan tersebut dikirim dari 818. Meskipun ada angka 818 saya tidak terkecoh oleh hal tersebut.
Setelah membaca pesan tersebut, saya berpikir kalau pesan tersebut merupakan penipuan. Saya menyimpulkan begitu karena saya tidak pernah mengikuti program undian apapun tetapi tiba-tiba dapat pesan singkat seperti itu, secara logika jelas tidak masuk akal. Selang dua hari dari pesan tersebut masuk, saya iseng mencoba menghubungi nomor telpon yang tertera dalam pesan tersebut, ternyata nomor tersebut sudah tidak aktif. Dengan demikian saya menjadi semakin yakin bahwa pesan singkakt tersebut merupakan penipuan.
Hal di atas hanya salah satu penipuan melalui pesan singkat yang pernah saya alami, masih banyak model-model penipuan melalui pesan singkat, jadi selalu waspada, jangan sampai anda tertipu.
Agar terhindar dari penipuan melalui pesan singkat , berikut ini adabeberapa tips agar tidak tertipu oleh penipuan melalui pesan singkat:
- Jangan terburu-buru menanggapi pesan singkakat tersebut.
- Pastikan dari instansi/perusahaan mana undian tersebut diselenggarakan.
- Hubungi pihak instansi/perusahaan penyelenggara undian, cari info nomor telpon instansi/perusahaan melalui internet atau yang lain, lalu telpon tanyakan benar tidak ada program undian, ingat jangan sekali-kali anda menghubungi nomor yang ada dalam pesan singkat.
- Jangan melakukan transfer uang kepada pihak manapun yang belum anda kenal.
March 18, 2011
A history of Zero
One of the commonest questions which the readers of this archive ask is: Who discovered zero? Why then have we not written an article on zero as one of the first in the archive? The reason is basically because of the difficulty of answering the question in a satisfactory form. If someone had come up with the concept of zero which everyone then saw as a brilliant innovation to enter mathematics from that time on, the question would have a satisfactory answer even if we did not know which genius invented it. The historical record, however, shows quite a different path towards the concept. Zero makes shadowy appearances only to vanish again almost as if mathematicians were searching for it yet did not recognise its fundamental significance even when they saw it.
The first thing to say about zero is that there are two uses of zero which are both extremely important but are somewhat different. One use is as an empty place indicator in our place-value number system. Hence in a number like 2106 the zero is used so that the positions of the 2 and 1 are correct. Clearly 216 means something quite different. The second use of zero is as a number itself in the form we use it as 0. There are also different aspects of zero within these two uses, namely the concept, the notation, and the name. (Our name “zero” derives ultimately from the Arabic sifr which also gives us the word “cipher”.)
Neither of the above uses has an easily described history. It just did not happen that someone invented the ideas, and then everyone started to use them. Also it is fair to say that the number zero is far from an intuitive concept. Mathematical problems started as ‘real’ problems rather than abstract problems. Numbers in early historical times were thought of much more concretely than the abstract concepts which are our numbers today. There are giant mental leaps from 5 horses to 5 “things” and then to the abstract idea of “five”. If ancient peoples solved a problem about how many horses a farmer needed then the problem was not going to have 0 or -23 as an answer.
One might think that once a place-value number system came into existence then the 0 as an empty place indicator is a necessary idea, yet the Babylonians had a place-value number system without this feature for over 1000 years. Moreover there is absolutely no evidence that the Babylonians felt that there was any problem with the ambiguity which existed. Remarkably, original texts survive from the era of Babylonian mathematics. The Babylonians wrote on tablets of unbaked clay, using cuneiform writing. The symbols were pressed into soft clay tablets with the slanted edge of a stylus and so had a wedge-shaped appearance (and hence the name cuneiform). Many tablets from around 1700 BC survive and we can read the original texts. Of course their notation for numbers was quite different from ours (and not based on 10 but on 60) but to translate into our notation they would not distinguish between 2106 and 216 (the context would have to show which was intended). It was not until around 400 BC that the Babylonians put two wedge symbols into the place where we would put zero to indicate which was meant, 216 or 21 ” 6.
The two wedges were not the only notation used, however, and on a tablet found at Kish, an ancient Mesopotamian city located east of Babylon in what is today south-central Iraq, a different notation is used. This tablet, thought to date from around 700 BC, uses three hooks to denote an empty place in the positional notation. Other tablets dated from around the same time use a single hook for an empty place. There is one common feature to this use of different marks to denote an empty position. This is the fact that it never occured at the end of the digits but always between two digits. So although we find 21 ” 6 we never find 216 ”. One has to assume that the older feeling that the context was sufficient to indicate which was intended still applied in these cases.
If this reference to context appears silly then it is worth noting that we still use context to interpret numbers today. If I take a bus to a nearby town and ask what the fare is then I know that the answer “It’s three fifty” means three pounds fifty pence. Yet if the same answer is given to the question about the cost of a flight from Edinburgh to New York then I know that three hundred and fifty pounds is what is intended.
We can see from this that the early use of zero to denote an empty place is not really the use of zero as a number at all, merely the use of some type of punctuation mark so that the numbers had the correct interpretation.
Now the ancient Greeks began their contributions to mathematics around the time that zero as an empty place indicator was coming into use in Babylonian mathematics. The Greeks however did not adopt a positional number system. It is worth thinking just how significant this fact is. How could the brilliant mathematical advances of the Greeks not see them adopt a number system with all the advantages that the Babylonian place-value system possessed? The real answer to this question is more subtle than the simple answer that we are about to give, but basically the Greek mathematical achievements were based on geometry. Although Euclid’s Elements contains a book on number theory, it is based on geometry. In other words Greek mathematicians did not need to name their numbers since they worked with numbers as lengths of lines. Numbers which required to be named for records were used by merchants, not mathematicians, and hence no clever notation was needed.
Now there were exceptions to what we have just stated. The exceptions were the mathematicians who were involved in recording astronomical data. Here we find the first use of the symbol which we recognise today as the notation for zero, for Greek astronomers began to use the symbol O. There are many theories why this particular notation was used. Some historians favour the explanation that it is omicron, the first letter of the Greek word for nothing namely “ouden”. Neugebauer, however, dismisses this explanation since the Greeks already used omicron as a number – it represented 70 (the Greek number system was based on their alphabet). Other explanations offered include the fact that it stands for “obol”, a coin of almost no value, and that it arises when counters were used for counting on a sand board. The suggestion here is that when a counter was removed to leave an empty column it left a depression in the sand which looked like O.
Ptolemy in the Almagest written around 130 AD uses the Babylonian sexagesimal system together with the empty place holder O. By this time Ptolemy is using the symbol both between digits and at the end of a number and one might be tempted to believe that at least zero as an empty place holder had firmly arrived. This, however, is far from what happened. Only a few exceptional astronomers used the notation and it would fall out of use several more times before finally establishing itself. The idea of the zero place (certainly not thought of as a number by Ptolemy who still considered it as a sort of punctuation mark) makes its next appearance in Indian mathematics.
The scene now moves to India where it is fair to say the numerals and number system was born which have evolved into the highly sophisticated ones we use today. Of course that is not to say that the Indian system did not owe something to earlier systems and many historians of mathematics believe that the Indian use of zero evolved from its use by Greek astronomers. As well as some historians who seem to want to play down the contribution of the Indians in a most unreasonable way, there are also those who make claims about the Indian invention of zero which seem to go far too far. For example Mukherjee in [6] claims:-
… the mathematical conception of zero … was also present in the spiritual form from 17 000 years back in India.
What is certain is that by around 650AD the use of zero as a number came into Indian mathematics. The Indians also used a place-value system and zero was used to denote an empty place. In fact there is evidence of an empty place holder in positional numbers from as early as 200AD in India but some historians dismiss these as later forgeries. Let us examine this latter use first since it continues the development described above.
In around 500AD Aryabhata devised a number system which has no zero yet was a positional system. He used the word “kha” for position and it would be used later as the name for zero. There is evidence that a dot had been used in earlier Indian manuscripts to denote an empty place in positional notation. It is interesting that the same documents sometimes also used a dot to denote an unknown where we might use x. Later Indian mathematicians had names for zero in positional numbers yet had no symbol for it. The first record of the Indian use of zero which is dated and agreed by all to be genuine was written in 876.
We have an inscription on a stone tablet which contains a date which translates to 876. The inscription concerns the town of Gwalior, 400 km south of Delhi, where they planted a garden 187 by 270 hastas which would produce enough flowers to allow 50 garlands per day to be given to the local temple. Both of the numbers 270 and 50 are denoted almost as they appear today although the 0 is smaller and slightly raised.
We now come to considering the first appearance of zero as a number. Let us first note that it is not in any sense a natural candidate for a number. From early times numbers are words which refer to collections of objects. Certainly the idea of number became more and more abstract and this abstraction then makes possible the consideration of zero and negative numbers which do not arise as properties of collections of objects. Of course the problem which arises when one tries to consider zero and negatives as numbers is how they interact in regard to the operations of arithmetic, addition, subtraction, multiplication and division. In three important books the Indian mathematicians Brahmagupta, Mahavira and Bhaskara tried to answer these questions.
Brahmagupta attempted to give the rules for arithmetic involving zero and negative numbers in the seventh century. He explained that given a number then if you subtract it from itself you obtain zero. He gave the following rules for addition which involve zero:-
The sum of zero and a negative number is negative, the sum of a positive number and zero is positive, the sum of zero and zero is zero.
Subtraction is a little harder:-
A negative number subtracted from zero is positive, a positive number subtracted from zero is negative, zero subtracted from a negative number is negative, zero subtracted from a positive number is positive, zero subtracted from zero is zero.
Brahmagupta then says that any number when multiplied by zero is zero but struggles when it comes to division:-
A positive or negative number when divided by zero is a fraction with the zero as denominator. Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero.
Really Brahmagupta is saying very little when he suggests that n divided by zero is n/0. Clearly he is struggling here. He is certainly wrong when he then claims that zero divided by zero is zero. However it is a brilliant attempt from the first person that we know who tried to extend arithmetic to negative numbers and zero.
In 830, around 200 years after Brahmagupta wrote his masterpiece, Mahavira wrote Ganita Sara Samgraha which was designed as an updating of Brahmagupta’s book. He correctly states that:-
… a number multiplied by zero is zero, and a number remains the same when zero is subtracted from it.
However his attempts to improve on Brahmagupta’s statements on dividing by zero seem to lead him into error. He writes:-
A number remains unchanged when divided by zero.
Since this is clearly incorrect my use of the words “seem to lead him into error” might be seen as confusing. The reason for this phrase is that some commentators on Mahavira have tried to find excuses for his incorrect statement.
Bhaskara wrote over 500 years after Brahmagupta. Despite the passage of time he is still struggling to explain division by zero. He writes:-
A quantity divided by zero becomes a fraction the denominator of which is zero. This fraction is termed an infinite quantity. In this quantity consisting of that which has zero for its divisor, there is no alteration, though many may be inserted or extracted; as no change takes place in the infinite and immutable God when worlds are created or destroyed, though numerous orders of beings are absorbed or put forth.
So Bhaskara tried to solve the problem by writing n/0 = ∞. At first sight we might be tempted to believe that Bhaskara has it correct, but of course he does not. If this were true then 0 times ∞ must be equal to every number n, so all numbers are equal. The Indian mathematicians could not bring themselves to the point of admitting that one could not divide by zero. Bhaskara did correctly state other properties of zero, however, such as 02 = 0, and √0 = 0.
Perhaps we should note at this point that there was another civilisation which developed a place-value number system with a zero. This was the Maya people who lived in central America, occupying the area which today is southern Mexico, Guatemala, and northern Belize. This was an old civilisation but flourished particularly between 250 and 900. We know that by 665 they used a place-value number system to base 20 with a symbol for zero. However their use of zero goes back further than this and was in use before they introduced the place-valued number system. This is a remarkable achievement but sadly did not influence other peoples.
You can see a separate article about Mayan mathematics.
The brilliant work of the Indian mathematicians was transmitted to the Islamic and Arabic mathematicians further west. It came at an early stage for al-Khwarizmi wrote Al’Khwarizmi on the Hindu Art of Reckoning which describes the Indian place-value system of numerals based on 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This work was the first in what is now Iraq to use zero as a place holder in positional base notation. Ibn Ezra, in the 12th century, wrote three treatises on numbers which helped to bring the Indian symbols and ideas of decimal fractions to the attention of some of the learned people in Europe. The Book of the Number describes the decimal system for integers with place values from left to right. In this work ibn Ezra uses zero which he calls galgal (meaning wheel or circle). Slightly later in the 12th century al-Samawal was writing:-
If we subtract a positive number from zero the same negative number remains. … if we subtract a negative number from zero the same positive number remains.
The Indian ideas spread east to China as well as west to the Islamic countries. In 1247 the Chinese mathematician Ch’in Chiu-Shao wrote Mathematical treatise in nine sections which uses the symbol O for zero. A little later, in 1303, Zhu Shijie wrote Jade mirror of the four elements which again uses the symbol O for zero.
Fibonacci was one of the main people to bring these new ideas about the number system to Europe. As the authors of [12] write:-
An important link between the Hindu-Arabic number system and the European mathematics is the Italian mathematician Fibonacci.
In Liber Abaci he described the nine Indian symbols together with the sign 0 for Europeans in around 1200 but it was not widely used for a long time after that. It is significant that Fibonacci is not bold enough to treat 0 in the same way as the other numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 since he speaks of the “sign” zero while the other symbols he speaks of as numbers. Although clearly bringing the Indian numerals to Europe was of major importance we can see that in his treatment of zero he did not reach the sophistication of the Indians Brahmagupta, Mahavira and Bhaskara nor of the Arabic and Islamic mathematicians such as al-Samawal.
One might have thought that the progress of the number systems in general, and zero in particular, would have been steady from this time on. However, this was far from the case. Cardan solved cubic and quartic equations without using zero. He would have found his work in the 1500’s so much easier if he had had a zero but it was not part of his mathematics. By the 1600’s zero began to come into widespread use but still only after encountering a lot of resistance.
Of course there are still signs of the problems caused by zero. Recently many people throughout the world celebrated the new millennium on 1 January 2000. Of course they celebrated the passing of only 1999 years since when the calendar was set up no year zero was specified. Although one might forgive the original error, it is a little surprising that most people seemed unable to understand why the third millennium and the 21st century begin on 1 January 2001. Zero is still causing problems!
References (14 books/articles)
Other Web sites:
Astroseti (A Spanish translation of this article)
Article by: J J O’Connor and E F RobertsonMarch 17, 2011
Pantai Indrayanti
INDRAYANTI , ya itu nama sebuah pantai yang ada di Yogyakarta, tepatnya Sundak Timur, Tepus, Wonosari, Gunung Kidul. Pantai Indrayanti ini masih tergolong pantai yang baru di yogyakarta ketika saya berkunjung kesana pun belum seramai pantai-pantai disekitarnya seperti pantai SUNDAK, BARON, KRAKAL, KRUKUP atau WEDI OMBO.
Perjalanan menuju Pantai INDRAYANTI jika ditempuh dari yogyakarta kira-kira 2jam. Tapi perjalanan yang jauh itu terbayar dengan keindahan yang ada di pantai INDRAYANTI ini, hamparan pasirnya yang putih bersih, tidak banyak sampah serta batu-batu yang menjulang dengan kokoh adalah salah satu ciri khas dari pantai ini. Keindahan pantai ini juga tidak kalah dengan pantai-pantai yang ada dibali.
Fasilitas yang ada disana antara lain :
Menu makanan dan minuman (Food & Beverage):
- Ayam Goreng/Bakar
- Ikan Bakar/Goreng
- Es Kelapa Muda
- Menu khusus sesuai pesanan -By Order
Di pantai ini juga anda bisa bermain jetsky dan di pandu oleh orang-orang yang profesional. Jadi untuk anda yang ingin mencari tempat wisata yang baru tidak ada salahnya anda berkunjung ke PANTAI INDRAYANTI ini dan menikmati keindahannya.
sumber: http://89trip.blogspot.com/2010/07/pantai-indrayanti.html
Gua Pindul
Gunungkidul Terletak sekitar 7 km arah utara Kota Wonosari, Desa Bejiharjo, Karangmojo, Gunungkidul menyimpan potensi wisata yang menarik. Beberapa potensi wisata tersebut antara lain Gua Pindul, Gua Gelatik, Monumen Sudirman, Situs Sokoliman, Banyumoto, serta areal pemancingan. Namun, hingga saat ini belum ada perhatian khusus dari pemerintah daerah untuk mengembangkan obyek wisata tersebut. Hal ini diungkapkan oleh Ketua Kelompok Sadar Wisata (Pokdarwis) Desa Bejiharjo, Subagyo, kepada Jogjatrip.com pada Jumat (8/10). Lebih lanjut Subagyo menjelaskan bahwa obyek wisata yang ada di Desa Bejiharjo, khususnya di Dusun Gelaran, belum tergarap dengan masimal karenaketiadaan dana untuk membenahi kawasan tersebut. Akibatnya, wisatawan pun belum banyak mengetahui potensi wisata yang ada di daerah ini. “Sebenarnya kami ingin mengembangkan keseluruhan potensi wisata yang ada supaya layak dikunjungi. Namun, berhubung belum ada dana bantuan, warga masih terfokus pada pembenahan Gua Pindul yang bisa digunakan untuk cavetubing,” ujarnya. Gua Pindul sendiri merupakan gua horizontal sepanjang 300 meter, lebar 5 meter, dengan sungai bawah tanah yang mengalir di dalamnya. Gua yang terhubung dengan bendungan Kali Banyumoto ini, memiliki aliran air yang sangat tenang, sehingga cocok digunakan untuk cavetubing segala usia. Tak jauh dari Gua Pindul, terdapat Gua Gelatik yang merupakan gua kering. Gua ini masih belum tersentuh karena jalan masuknya berupa celah yang sangat kecil dan hanya bisa dimasuki dengan cara merangkak. Namun, di dalam gua tersebut terdapat ruangan yang cukup luas. “Karakteristik Gua Pindul ini berbeda dengan Gua Kalisuci, di Gua Pindul aliran airnya lebih tenang dan aksesnya lebih mudah. Aman untuk dimasuki siapa saja, bahkan oleh anak-anak sekalipun. Kami sendiri berharap Gua Pindul dapat menjadi salah satu alternatif wisata Gunungkidul selain pantai, karena memang berpotensi untuk dikembangkan,” ujar Lutfi Setya Nugroho, SE, salah seorang Staf Bidang Pemasaran Wisata Dinas Pariwisata dan Kebudayaan Gunungkidul yang turut mendampingiJogjatrip.com saat memasuki Gua Pindul. Sujarwono, SH, Staf Pemasaran Dispar Gunungkidul lainnya, mengatakan saat ini memang belum ada dana stimulan dari pemerintah daerah untuk pegembangan potensi wisata di Desa Bejiharjo. “Bantuan yang Dinas Pariwisata berikan hanya berupa promosi, pemasaran, dan pendampingan. Promosi yang baru saja dilakukan yaitu mengadakan famtrip yang salah satu lokasinya adalah Desa Bejiharjo,” terang Sujarwono saat ditemui Jogjatrip.com di kantornya. Masyarakat Desa Bejiharjo sendiri berharap supaya potensi wisata yang ada di desa mereka dapat menjadi obyek wisata terpadu. “Sebab selain obyek wisata alam dan situs bersejarah, Desa Bejiharjo juga memiliki aktivitas seni budaya yang rutin dilakukan oleh warga masyarakat. Semoga hal itu bisa menjadi magnet tersendiri untuk menarik wisatawan,” harap Subagyo. Guna mewujudkan harapan tersebut, hal-hal yang sedang dilakukan oleh Pokdarwis Desa Wisata Bejiharjo saat ini adalah penataan lingkungan, kebersihan, dan mulai menyediakan paket wisata. Sumber: www.jogjatrip.com
Wisata kuliner buah-buahan di Gunungkidul
March 11, 2011
Mahasiswa asal Gunungkidul Temukan Vaksin AI dari Mahkota Dewa
Berkat inovasinya memanfaatkan ekstrak buah mahkota dewa (Phaleria macrocarpa) untuk menghambat virus flu burung/Avian Influensa (AI) H5N1, Artina Prastiwi, mahasiswa Fakultas Kedokteran Hewan UGM, terpilih menjadi juara pertama dalam kompetisi Masyarakat Ilmuwan dan Teknologi Indonesia (MITI) Paper Challenge (MPC) 2011 yang dilangsungkan 29 Januari silam.
Artina Prastiwi, mahasiswa angkatan 2007 ini meraih juara I setelah mengajukan serangkaian penelitian yang tertuang dalam paper ilmiah berjudul “Uji Aktivitas Antiviral Infus Ekstrak Mahkota Dewa (Phaleria Macrocarpa) In Ovo dalam Penghambatan Replikasi Virus H5n1 Sebagai Vaksin Organik Pioner di Asia”. Ia berhasil menyisihkan 96 paper lain dari seluruh Indonesia.
Sebagai calon dokter hewan, Artina mengaku gelisah dengan fenomena penyebaran virus AI di Indonesia yang telah memakan cukup banyak korban. Ia memahami betul orang yang bersinggungan langsung dengan unggas akan rentan terserang virus ini. Ia cemas terhadap nasib para peternak yang tidak saja mengalami kerugian materi akibat serangan virus mematikan ini, tetapi juga keselamatan jiwa mereka yang terancam. Meskipun peternak mengetahui risiko yang timbul, mereka jarang memvaksin untuk menangkal virus AI kepada unggasnya. “Banyak peternak yang tidak memvaksin unggasnya karena harga vaksin kimia AI di pasaran cukup mahal. Harganya dipatok 200 ribu rupiah untuk 100 dosis,” ujarnya.
Berawal dari kenyataan itu, gadis berjilbab ini berupaya mencari solusi untuk mengatasi persoalan yang meresahkan tersebut. Ia memanfaatkan buah mahkota dewa, potensi lokal Indonesia, yang secara ilmiah telah terbukti mampu meningkatkan daya tahan tubuh sebagai antivirus AI. Kandungan saponin dalam buah mahkota dewa bermanfaat selain dapat meningkatkan sistem kekebalan tubuh dan vitalitas juga bisa dimanfaatkan sebagai anti bakteri dan anti virus.
Untuk mendapatkan senyawa saponin, Artina mengekstrak buah mahkota dewa melalui penyulingan. Cara membuat antivirus dari ekstrak mahkota dewa ini diawali dengan penimbangan sesuai dosis yang dibutuhkan. Untuk dosis 10 ml, diperlukan buah mahkota dewa kering 100 gram per 100 ml air atau kelipatannya, yakni 100 gram per 1000 ml. “Selanjutnya, dilakukan penyulingan untuk mendapat ekstrak,” terangnya kepada wartawan, Kamis (3/3), di Ruang Fortakgama UGM.
Setelah mendapat ekstrak, Artina melakukan pengujian kadar saponin 10 ml di LPPT UGM. Menurutnya, ekstrak mahkota dewa harus mengandung kadar saponin 10 persen. Hasil saponin yang diperoleh inilah yang digunakan sebagai bahan baku, yakni sebagai pelarut suspense antigen virus AI. Lalu yang digunakan sebagai vaksin adalah ekstrak mahkota dewa 0,2 ml.
Pada mulanya, dituturkan Artina, uji coba dilakukan pada 30 butir telur ayam berembrio. Dari hasil uji tersebut diketahui telur yang diberi virus AI dan diberi tambahan saponin 10 persen dari ekstrak buah mahkota dewa 0,2 ml setelah diinkubasi selama 35 hari diketahui embrio tidak mati, sehat, dan tanpa bekas luka. Sementara itu, telur yang disuntik dosis yang lebih tinggi 15 persen dan 20 persen, ternyata semua embrio mati dengan bentuk perdarahan seluruh tubuh, kekerdilan, dan cairan alantois keruh. “Sepuluh persen merupakan hasil terbaik untuk menghambat virus flu burung. Ini membuktikan bahwa kadar saponin yang digunakan harus tepat sebab bisa menimbulkan keracunan jika diberikan dalam dosis besar,” jelasnya.
Setelah teruji aman pada telur, putri pasangan Sugita dan Wartinah ini mengujikan pada ayam berusia kurang dari 21 hari dan hasilnya cukup menggembirakan. Ayam yang telah divaksin tidak satu pun mengalami kematian.
Dikatakan gadis kelahiran Gunung Kidul, 26 Januari 1989 ini, vaksin yang dikembangkannya terbukti mampu menghambat perkembangan virus AI hingga 87 persen. Selain telah teruji dalam skala laboratorium mampu menghambat virus AI, vaksin ini juga lebih murah dibandingkan dengan vaksin kimia yang dijual di pasaran. Vaksin AI di pasaran biasanya dibandrol 200 ribu rupiah per 100 dosisnya. Sementara itu, vaksin buatannya 75 ribu rupiah per 100 dosis. Meskipun terbilang efektif dan murah, vaksin ini belum dipasarkan secara massal. “Masih perlu dilakukan penelitian lebih lanjut untuk mengetahui secara pasti hasilnya,” ungkap alumnus SMA 1 Wonosari ini.
Hasil penelitian ini menurut rencana juga akan dipresentasikan dalam seminar internasional yang digelar AMSTECS di Jepang pada 19-20 Maret mendatang.Sumber: http:// www.ugm.ac.id